CLIMATE CHANGE TOOLKIT PPM: The Impact of Trace Elements in the Environment

Standards

- NGSS Analyzing & Interpreting Data
- NGSS PS4.B Electromagnetic Radiation
- NGSS ESS3.D Global Climate Change
- NGSS Cause and Effect: Mechanism and Explanation
- o NGSS Energy and Matter
- Grade Level: High School/Middle School

Equipment:

- One-liter clear plastic or glass container
- Liquid food coloring w dropper
- Desk lamp
- Light meter
- Phone or camera to photograph the experiment
- Stirring rod
- Lab coat or similar, and paper towels

Activity Homepage

https://climate.earthathome.org/parts-per-million/

Introduction

The US Environmental Protection Agency sets standards for environmental contaminants that can damage human health. Sometimes these threshold levels are very small, expressed as parts per million, or parts per billion. In this experiment we look at the impact of a trace component measured in parts per million - not on human health - but on the way that light interacts with materials.

Why?

Canaries were used in coal mines from the 19th century into the 1980s to protect miners from carbon monoxide poisoning. Canaries are a *sentinel species*, more sensitive to toxic gases than humans, and could thus provide a warning to miners when air quality became hazardous. The current EPA air quality standard for CO is 9 ppm. Human exposure to CO concentrations above150 ppm can be fatal.

Carbon monoxide is just one of many chemicals that can be hazardous to humans and to ecosystems when present even at very low concentrations. A second example comes from the 2014 water crisis in the city of Flint, Michigan, where domestic water supplies in many of homes were found to contain more than 100 parts per billion dissolved lead. The EPA

threshold for lead is 15 **ppb**, and its target level is zero. Children are especially at risk; there is no safe level of lead in drinking water.

Despite widespread appreciation of the impact of low concentrations of many environmental contaminants, there is a stubborn skepticism among a segment of our population regarding the impact of 420 ppm CO_2 in Earth's atmosphere. Some individuals ask how a quantity that represents 0.04% of the atmosphere could possibly affect global climate? Yet we see the consequences of ppm and ppb abundances all around us - to the point where canaries accompanied coal miners on the job, every day.

What?

This lab explores the impact of small concentrations. Here we will examine the way light interacts with colored dye in water because it is very similar to the way light interacts with atmospheric gases like carbon dioxide. We can use non-toxic food dyes to visualize changes caused by trace components in water. In this case we will look at the absorption of light as it passes through water samples with varying concentrations of dye.

The pigments used in dyes selectively absorb specific wavelengths of visible light allowing the desired color to be transmitted or reflected (Figure 1). Our eyes detect the transmitted wavelengths as the complementary color to the wavelengths absorbed. The concept of selective absorption is one we interact with every day - probably without thinking about it - because it's the mechanism that produces the colors we see everywhere around us. Selective absorption occurs at other wavelengths beyond the visible spectrum, and the absorption of specific wavelengths in the infrared part of the spectrum is especially important for global climate.

How?

PART 1 – SET UP AND RUN THE EXPERIMENT

- Fill the sample bottle with one liter (1000 ml) of tap water. Let the bottle sit undisturbed for a few minutes, as the action of filling the bottle introduces microbubbles to the sample that will affect the transmission of light through the bottle.
- Place the desk lamp on one side of the bottle so that the light shines horizontally through the smooth sides of the bottle.
- Place the light meter on the opposite side of the bottle on a stand if necessary so that the light detectors are pointed directly through the bottle toward the desk lamp (Figure 2).
- Configure the light meter app to collect data for 5 minutes, using the sensors for white light, blue light, and red light.
- Place a phone or camera in a good spot to take photos of the experiment each time new dye is added.

Figure 2: (Above) Experimental set-up with one-liter plastic bottle, desk lamp and light meter. Inset is view from above, after blue dye is added.

Equipment Note: The light meter shown here is a Vernier Go-Direct Light & Color Sensor (https://www.vernier.com/product/go-direct-light-and-color-sensor/). This sensor is fun in this application because we can look at red and blue light absorbance separately, and this meter connects to a smart phone via Bluetooth so that we can automatically log the data. Any light meter will give an interesting result, or you can simply gage the results visually with no light meter at all. You can also use an app on your phone, but we find some of the (free) light meter apps to be rather fussy and sensitive to disturbance.

The food coloring shown here is FD&C Blue #1 (also called Brilliant Blue FCF and E133). It is widely used in foods, globally, and is considered safe to eat. Note, however, that any dye WILL stain clothes.

We will run the experiment for five minutes. In the first minute we will leave the bottle undisturbed, with just the tap water, and collect that data as the baseline. Open the dye container so that you're ready to begin adding drops.

Note: be careful when adding the dye and stirring the sample that you don't bump the lamp or the light meter. Your results will not be consistent if the experimental components move around.

- Start the data collection on the light meter app. After one minute, add one drop of dye and gently stir the solution; a few swirls is fine. The color will continue to become more uniform even after you stop stirring.
- Take a photo of the bottle.
- At the two minute mark repeat the process: add a drop of dye, stir, and take a photo.
- Repeat again at minute 3 and minute 4.

• After five minutes stop the experiment, (save data if necessary) close the dye bottle, turn off the lamp.

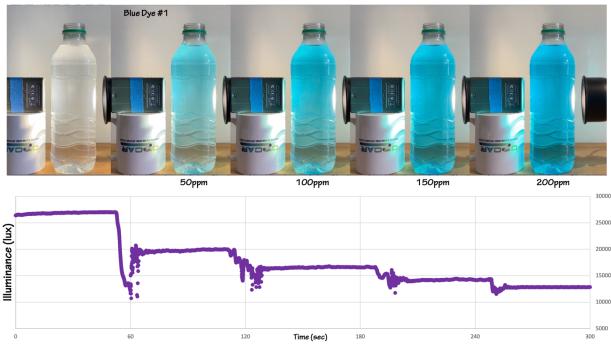


Figure 3: Experimental results for four drops of blue dye, added appx one minute apart. The noisy data that mark each increment is the result of stirring.

PART 2 – CALCULATE THE CONCENTRATIONS

The concentration of a mixture can be calculated on the basis of mass or volume. For this experiment the concentration of the solution will be calculated by volume:

Concentration (ppmv) = volume dye (ml) \div volume water (ml) $* 1x10^{6}$

By convention, one drop of liquid is assumed to have a volume of 0.05 milliliter (ml). Fill in the table below for the dye concentrations at each minute of the experimental run.

For 1 drop = 0.05ml the concentration of dye is 0.05ml/1000ml = $5x10^{-5} = 50$ ppmv.

Parts per Million by Mass and Volume

- ppm on a mass basis (ppm, or milligram/liter) is calculated by dividing the mass of the substance in question by the total mass of the mixture, and then multiplying by 1,000,000. This is often used for measuring the concentration of a dissolved substance in a liquid.
- ppm on a volume basis (ppmv) is calculated by dividing the volume of the substance in question by the total volume of the mixture, and then multiplying by 1,000,000. This is often used for measuring the concentration of a gas in a gas mixture.

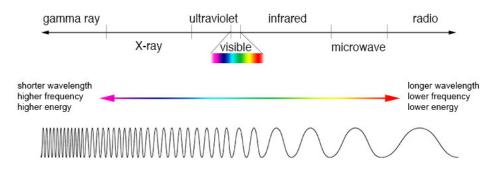
In this experiment we are adding 0.05ml dye to 1000ml water, so the units are ppmv.

Time	# Drops	Concentration (ppmv)
0 min	0	0
1		
2		
3		
4		

PART 3 – GRAPH THE RESULTS

• Graph your data as a function of time.

This means making graphs with time on the horizontal axis, and your other parameters on the vertical axes. You can make one graph for each parameter (concentration, total illuminance of white light, red light, and blue light) or put them together on a single graph (with vertical axis scales on both on the left and right of the graph). Decide how to best incorporate your photos into your data analysis.


Part 4 – Analysis

In this experiment we applied a disturbance, or forcing factor, to the system that we are studying; we added drops of dye to the bottle of water and observed the result. Since we systematically added increasing amounts of dye, one drop at a time, we should expect to see behavior that changes in a systematic way.

- 1. Which parameters increased over the course of the experiment?
- 2. Did any parameters decrease over the course of the experiment? Which?
- 3. Describe the roles of absorption and transmission in this experiment.
- 4. Write a short paragraph summarizing your results.

PART 5 - DISCUSSION

In the introduction to this lab we discussed contaminants in the environment, and in particular, we mentioned CO_2 in the atmosphere and its role in climate change. Just like the dye in this lab, CO_2 absorbs light at specific wavelengths. The difference is that CO_2 doesn't absorb visible wavelengths, it absorbs longer wavelengths in the infrared (IR) part of the spectrum.

The wavelengths of ultraviolet and visible light are measured in nanometers (nm = 10^{-9} meters). Longer infrared wavelengths are measured in micrometers (μ m = 10^{-6} meters). The blue dye in this experiment absorbs red light at 630 nm. CO₂ absorbs IR light at 4.3 and 15 μ m. Figure 3, below, shows the absorbance of CO₂ and chlorophyll (absorbance at 659and 455 nm) together on a logarithmic scale of wavelength.

5. Knowing that CO₂ is present in the atmosphere at a concentration of 420 ppmv, and knowing that CO₂ absorbs IR light at 4.3 and 15 nm, what would you expect to "see" if you had IR-vision that could look at light passing through Earth's atmosphere? Draw, sketch, graph, or describe your ideas.

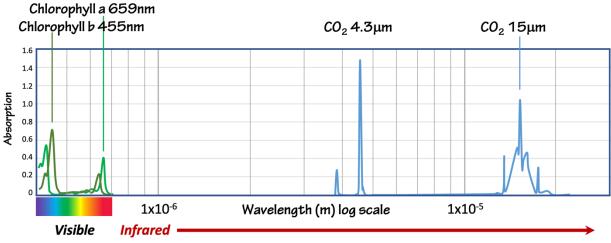


Figure 3: Absorption spectra for chlorophyll and carbon dioxide.

PART 6: ADDITIONAL EXPERIMENTS

If you have a light meter that detects specific wavelengths you can illustrate the change in transmission intensity of each wavelength with increasing concentration of dye (Figure 4). In the experiment here the intensity at 465 nm continues to increase, while the intensity at 625 nm goes to zero when the dye concentration reaches 200 ppmv. You can also run the experiment with different dye colors, for example, the behavior of the red food coloring Carmine (E120, Natural Red 4) is shown in Figure 5.

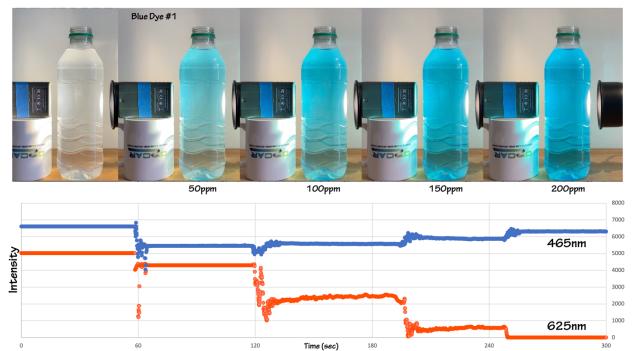
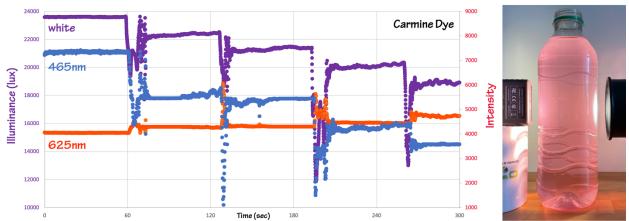



Figure 4: The change in blue light (465 nm) and red light (625 nm) transmission for the same experiment shown in Figures 1 & 2. The transmission at both wavelengths decreases initially when the pure water sample is dyed. With each additional drop of blue dye the transmission (and reflection) of blue light increases and the transmission of red light decreases, with red dropping to zero at a concentration of 200 ppmv. The visual change in color shown in the top half of the figure also shows increasing intensity of the blue color of the solution.

Figure 5: The same experimental set-up run with four drops of red food coloring containing carmine dye.